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ABSTRACT

The Gene Expression Barcode project, http://
barcode.luhs.org, seeks to determine the genes ex-
pressed for every tissue and cell type in humans and
mice. Understanding the absolute expression of
genes across tissues and cell types has applications
in basic cell biology, hypothesis generation for gene
function and clinical predictions using gene expres-
sion signatures. In its current version, this project
uses the abundant publicly available microarray
data sets combined with a suite of single-array pre-
processing, quality control and analysis methods. In
this article, we present the improvements that have
been made since the previous version of the Gene
Expression Barcode in 2011. These include a variety
of new data mining tools and summaries, estimated
transcriptomes and curated annotations.

INTRODUCTION

Until the publication of the Gene Expression Barcode
(Barcode), databases using publicly available microarray
data were limited to biological questions based on
measures of relative gene expression (1,2). They were
unable to answer the most fundamental question—which
genes are expressed in a given sample. The Barcode was
the first database to report reliable estimates of absolute
gene expression, allowing an approximation of the human
and mouse transcriptomes.
Determining the genes expressed for every tissue and

cell type in the body has important consequences for
basic cell biology, generating hypotheses for gene function

and studying transcriptional changes in disease. Gene ex-
pression signatures have been used to make clinical pre-
dictions in a number of cancers and to elucidate basic gene
expression biology. With the advent of high-throughput
technologies, addressing these issues has become more
feasible, although several technological and statistical
challenges remain. Now in its third generation, Barcode
3.0 has made several improvements to its implementation,
greatly expanded its database and improved the web tools
to help researchers better investigate the human and
mouse transcriptomes.

High-throughput studies are hampered by false-positive
results, which can mislead researchers and lead to irrepro-
ducible results (1,3). The barcode algorithms were
designed to help minimize the impact of false positives
(positive results due to technical artifacts and not
biology) on gene expression studies, particularly for
those focused on finding biomarkers for diseases. We
continue to improve the algorithms and results, with the
ultimate goal being a complete molecular description of
the genes expressed in each cell type in the body. Toward
this end, we have downloaded all of the publicly available
microarray data from six of the most used platforms and
analyzed it using a novel suite of statistical tools designed
to obtain meaningful information from a single gene ex-
pression experiment, while minimizing the number of false
positives (2,4,5).

DATABASE METRICS

Table 1 shows the data and platform improvements for
Barcode 3.0. We have updated the barcodes for the
original and most popular Affymetrix platforms,
U133A, U133 plus 2.0 and MOE 430 2.0. In addition,
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we have added data from three new platforms, U133A 2.0,
Human Gene 1.0 ST and Mouse Gene 1.0 ST. This
extends the barcode technology from the 30 IVT (in vitro
transcription) arrays to the whole gene arrays. Owing to
limited data and statistical challenges, barcodes for exon
level data will be part of future releases.

IMPROVED SAMPLE CURATION

Although the majority of databases that use publicly
available gene expression data rely on the curation
supplied to GEO and ArrayExpress by the experimenter,
we manually curate a vast amount of the publicly avail-
able data. A large problem with the public microarray
databases is their use of an open vocabulary and open
submission structure. This hinders computational
approaches to curation and requires an extensive manual
curation effort to acquire the data necessary for the
barcode models. Currently, the annotation data are col-
lected and parsed to provide the most useful text fields.
Then biological researchers manually identify normal and
tumor samples for parameter estimation. The manual
curation also determines whether the sample is a tissue
or a purified cell type. Currently, only fluorescence-
activated cell sorted or laser-capture microdissection
isolated samples are considered purified cell types.

IMPROVED QUALITY CONTROL

Shortly after the publication of Barcode 2.0, a single-array
measure of quality was developed and used to show that
�10% of publicly available HGU133a and HGU133plus2
microarray data are of poor quality (5). In Barcode 3.0, we
use this measure of quality to filter poor quality arrays
when estimating the barcode parameters, resulting in
improved estimates of the null mean and variance.
Furthermore, these quality metrics are made available
for all arrays via the Barcode 3.0 website, allowing the
user to set their own quality threshold.

As high-throughput technologies are prone to outliers
and batch effects, it is important to limit these sources of
error. The barcode methodology is inherently conservative
in its estimation of absolute gene expression (to be called
expressed, a gene is required to be five standard deviations
above its null mean). Furthermore, discretization has been
shown to greatly reduce the influence of batch effects (1).

UPDATE OF BARCODE 2.0 PLATFORMS

The Barcode 2.0 database contained data from the three
most widely used Affymetrix microarray platforms—
U133A, U133 plus 2.0 and MOE 430 2.0. Since then,
the amount of publicly available data has nearly tripled
(Table 1). In addition to the improvements in quality
control described earlier in text, the increase in input
data led to improved estimates of the barcode parameters,
and therefore improvements in the estimation of absolute
gene expression.
Compared with Barcode 2.0 parameter estimates, the

Barcode 3.0 estimates were fairly similar. Estimates of the
null means were highly correlated between version
(GPL96: 0.99, GPL570: 0.98, GPL1261: 0.98) and only
�1% of the null means differed by >1. However, there
were a few genes whose null mean changed by >2
between versions. There are two potential reasons that
this change could have occurred: (i) the Barcode 2.0
estimate was driven by a handful of poor quality arrays
that have been removed from the training data in
Barcode 3.0 or (ii) the additional training data used in
Barcode 3.0 provided a more accurate estimate of the
null mean. This suggests that although Barcode 2.0 per-
formed well, there are significant improvements that can
be made by improved quality control and incorporation of
additional data.

NEW BARCODE 3.0 PLATFORMS

In addition to updating the microarray platforms present
in Barcode 2.0, we have added three new platforms—
U133A 2.0, Human Gene 1.0 ST and Mouse Gene 1.0
ST. The latter two represent a newer generation of
Affymetrix microarray that contains probes designed to
target the entire gene sequence rather than only the 30

end. Preprocessing of these arrays requires a slightly dif-
ferent fRMA implementation that includes both probe-
effect and exon-effect parameters to distinguish between
batch-effect susceptible probes and probes targeting exons
involved in alternative splicing (7).

BOTTOM-UP RESEARCH

Although a global approach to understanding gene
expression is critical, it is also important to make this
wealth of data available to researchers using bottom-up
approaches to studying gene expression—i.e. looking at
one or a handful of genes at a time. To facilitate this
kind of research, we have designed a new suite of data
mining and analysis tools. These tools will allow
researchers to query the database for changes at the indi-
vidual gene level so their research can be focused and not
overwhelmed by large numbers of extraneous results.
This approach requires some additional considerations,
such as the reliability of each probe set, which we have
provided in graphical form.
The first step toward allowing researchers to

query the database from a bottom-up approach is to
determine how well each probe set on an array works.
The probe sets work with varying efficacy and this is

Table 1. Barcode database metrics

Affymetrix
GeneChip

GEOa

platform
ID

Barcode 2.0
sample
number

Barcode 3.0
sample
number

U133A GPL96 13 824 23 936
U133 plus 2.0 GPL570 18 656 63 331
U133A 2.0 GPL571 0 8528
Human Gene 1.0 ST GPL6244 0 10 309
MOE430 2.0 GPL1261 9652 32 241
Mouse Gene 1.0 ST GPL6246 0 10 505

aGene Expression Omnibus (6).
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an important consideration for the researcher before
trying to interpret any results across studies. To aid in
this evaluation, we provide the user with the across-
tissue distribution of gene expression, a measure of
probe set reliability (average entropy), and a probe
page to enable sharing among researchers. An example
is shown with estrogen receptor 1(ESR1), a common
marker used in breast cancer research. There are nine
probe sets for ESR1 on the Affymetrix U133 plus 2.0
microarray platform. When examining their across-tissue
distribution, few of the probe sets were estimated to be
expressed in any given tissue. A z-score >5 is considered
to be evidence of expression, and only one probe set
achieved this expression in a variety of tissues,
205225_at (Figure 1 and Supplemental Material).

Among the other eight probe sets, no tissue showed a
median z-score >5 (Figure 1b). This is strong evidence
that only one of these probe sets, 205225_at, can
measure ESR1 expression.

Another consideration is that even though two probe
sets may both successfully measure gene expression, they
might not have equal dynamic ranges. A good analogy is
antibodies used for flow cytometry experiments. Some
antibodies show a strong signal and clearly differentiate
a positive binding event from background. Similarly,
probe sets show different binding behaviors due to
physical characteristics, such as GC content. By
examining the distribution of average z-scores across
tissues and cell types, one can easily compare the ability
of different probe sets to detect gene expression.

Figure 1. Across-tissue expression for two probe sets for estrogen receptor 1. 205225_at. 211234_x_at. Shown are the z-scores± the
median absolute deviation (MAD). A z-score >5 suggests the gene is expressed in that tissue. The figure also demonstrates how purified cells
give improved results as breast tissue shows ESR1 expression, but the purified cell types show it is restricted to ductal cells, lobular cells and stroma
(Figure 1, 205225_at). Blue–female reproductive tissues/cells. Red–brain tissues. Instructions for reproducing the figures are provided in the
Supplementary Material.
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For example, GPL570 has four probe sets that map to the
gene SFRP1 – 202035_s_at, 202036_s_at, 202037_s_at and
228413_s_at. Looking at their across tissue and cell type
expression distributions, one can clearly see that
228413_s_at does not detect a significant level of expres-
sion in any measured tissue or cell type; however, the other
three probe sets all detect expression in a sizeable number
of tissues (Figure 2). Although each of these three probe
sets has a clear null distribution (left-most mode) and a
range of gene expression signal (long right tail), probe sets
b and c have a larger dynamic range than probe set a.
However, none of these probe sets show a clear separation
between the background distribution and the expressed
distribution.
Two different search methods have also been added.

First, a researcher can identify the genes and experiments
of interest and directly download the preprocessed data
for analysis, using proven statistical methods (8).
Alternatively, the website provides consensus data for
tissues and purified cell types that can be downloaded
and compared, such as normal breast and breast tumors.
As with all experiments, the results from in silico data
mining should be considered preliminary and validated
through independent experimentation. It is important
for researchers to carefully consider the potential con-
founding effects from false positives due to batch effects.
One method to examine potential false-positive results is
to graph the Affymetrix control probe sets (dap, thr, phe
and lys) along with the gene of interest. (Currently, the full
probe set names must be used on the website, AFFX-
DapX-3_at, AFFX-ThrX-3_at, AFFX-PheX-3_at and
AFFX-LysX-3_at).

PATIENT-SPECIFIC (SINGLE-ARRAY) RESULTS

One of the primary benefits of the barcode approach is
the ability to obtain patient-specific (single array)
results. Because the barcode algorithm draws power by
analyzing the across-sample distributions, meaningful
results can be obtained from a single array. This is par-
ticularly important in clinical research, where each
patient may be unique and combining data can dilute
important differences. The barcode algorithm is
designed to provide this type of data so that patient-
level expression data can be meaningfully interpreted.
An example is shown in Figure 3, again looking at
ESR1. Most studies determine ESR1 status using an
alternative approach, such as RT-PCR and then lump
ESR1+ and ES1R- patient samples together to find gene
expression signatures. However, an alternative approach
would be to look at each sample independently, deter-
mine ESR1 status and look at other genes of interest for
that sample. This approach eliminates the potential bias
introduced by precategorizing patients and allows more
differences to be determined, as samples are not pooled
to gain statistical strength.
Figure 3 shows how this can be accomplished. Figure 3a

and b show histograms for the measured fluorescence
from two ESR1 probes for the patients from Miller
et al. (9). As discussed previously, only 1 ESR1 probe

Figure 2. The distribution of average z-scores across tissues and cell
types for four probe sets mapping to the gene SFRP1. The first three
probe sets show expression of SFRP1 in a fair number of tissues/cell
types; however, the fourth probe set does not exceed the expression
threshold in any tissue or cell type. Figures such as this one can be
used to evaluate the performance of multiple probe sets that map to the
same gene by comparing the proportion of tissues/cell types in which
the gene is called expressed, the dynamic range of the standardized
expression estimates (z-scores) and the separation between the unex-
pressed null distribution and the expressed signal.
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detects ESR1 expression, 205225_at, and it shows two
clear distributions (Figure 3b). In contrast, probe
215551_at clearly does not work. Figure 3c and d show
that the results at the patient level correspond well with
RT-PCR results for the probe set that works for ESR1.
Therefore, a researcher could separate the microarray
results into ESR1� (<8 log2 fluorescence) and ESR1+
(>10 log2 fluorescence) and extend this result to any
other gene or genes of interest using the barcode
database to further subdivide this patient population.

DISCUSSION

With the completed human and mouse genomes, re-
searchers are now thoroughly studying the transcriptome,
epigenome and proteome. As a reliable approximation of
the transcriptome, the Barcode data have been used to
compliment epigenetic studies (10), to improve ChIP-seq
and ChIP-chip data analysis (11) and to investigate
increased heterogeneity in cancer (12). The barcode data
are an integral part of the EpiViz webtool, which links tran

Figure 3. Log2 fluorescence values, after frma preprocessing, are shown for patients from GSE3494 (a) probe set 215551_at, a probe set which does
not accurately measure ESR1 expression and (b) 205225_at, a probe set which performs well. (c) Log2 fluorescence correlated with RT-PCR status
and 2000 random normal tissues. Probe sets 215551_at and (d) 205225_at, which correspond well to ESR1 status. ESR1 status was determined by
RT-PCR in Miller et al. (9).
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scriptomic and epigenomic data—an example workspace
can be seen at http://epiviz.cbcb.umd.edu/?workspace=
0271BFB50384DE1DB4A3D712702D0E34. As the
genome, epigenome and proteome all interact with the
transcriptome, the barcode estimations will be of interest
to a broad community of researchers. The frma R/BioC
package, coupled with the frmavecs data packages for
each supported platform, allow one to easily incorporate
barcode data into one’s own analyses (4,7).

The two primary bottlenecks to supporting additional
high-throughput platforms are as follows: (i) access to
enough publicly available data and (ii) manual curation
of the data annotation. Increased journal requirements to
make data publicly available and online repositories such
as GEO and ArrayExpress have reduced the first bottle-
neck considerably. For most widely used platforms, suffi-
cient data are made publicly available within the first 2–3
years of use. However, little has been done to address the
second bottleneck, curation. Computational methods are
currently being developed that may help with curation,
such as those being developed by InSilicoDB (13);
however, these efforts are limited by inadequate user-
supplied annotation and the lack of a controlled vocabu-
lary to describe experimental samples.

New microarray and RNA-seq technologies are
measuring different parts of the transcriptome, including
miRNAs, long non-coding RNAs and exons. As the
barcode methods are empirically driven, there currently
are not enough data to develop barcodes for these
technologies, but there will be in the near future.
When possible, barcodes will be developed for these
techniques to help researchers obtain a more complete
view of the human and murine transcriptomes in health
and disease.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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